Feature Chain Parser

Overview

The Feature Chain Parser system enables feature groups to work with both traditional string-based feature names and modern configuration-based feature creation. This unified approach provides flexibility while maintaining backward compatibility.

Key Concepts

Feature Chaining

Feature chaining allows feature groups to be composed, where the output of one feature group becomes the input to another. This is reflected in the feature name using a double underscore pattern:

{operation}__{source_feature}

For example: - sum_aggr__sales - Simple feature - max_aggr__sum_7_day_window__mean_imputed__price - Chained feature

Unified Parser Architecture

The modernized FeatureChainParser provides a unified approach through the match_configuration_feature_chain_parser method that handles:

  • String-based features: Traditional pattern matching with regex
  • Configuration-based features: Modern approach using Options and PROPERTY_MAPPING
  • Dual validation: Features can be validated using either or both approaches

Options Architecture: Group vs Context Parameters

The new Options class separates parameters into two categories:

  • Group Parameters: Affect Feature Group resolution and splitting (stored in options.group)
  • Context Parameters: Metadata that doesn't affect splitting (stored in options.context)
from mloda_core.abstract_plugins.components.options import Options
from typing import Optional

# New Options architecture
options = Options(
    group={
        "data_source": "production",  # Affects Feature Group splitting
    },
    context={
        "aggregation_type": "sum",    # Doesn't affect splitting
        "mloda_source_feature": "sales"
    }
)

Configuration-Based Feature Creation

Modern feature creation uses the Options architecture:

from mloda_core.abstract_plugins.components.feature import Feature
from mloda_core.abstract_plugins.components.options import Options

# Traditional string-based approach:
feature = Feature("sum_aggr__sales")

# Modern configuration-based approach:
feature = Feature(
    "placeholder",  # Will be replaced during processing
    Options(
        context={
            "aggregation_type": "sum",
            "mloda_source_feature": "sales"
        }
    )
)

Modern Implementation in Feature Groups

1. Define PROPERTY_MAPPING Configuration

The modern approach uses PROPERTY_MAPPING to define parameter validation and classification:

from mloda_core.abstract_plugins.abstract_feature_group import AbstractFeatureGroup
from mloda_plugins.feature_group.experimental.default_options_key import DefaultOptionKeys
from mloda_core.abstract_plugins.components.feature_name import FeatureName

class MyFeatureGroup(AbstractFeatureGroup):
    PATTERN = "__"
    PREFIX_PATTERN = [r"^([a-zA-Z_]+)_operation__"]

    PROPERTY_MAPPING = {
        # Feature-specific parameter
        "operation_type": {
            "sum": "Sum aggregation",
            "avg": "Average aggregation", 
            "max": "Maximum aggregation",
            DefaultOptionKeys.mloda_context: True,  # Context parameter
            DefaultOptionKeys.mloda_strict_validation: True,  # Strict validation
        },
        # Source feature parameter
        DefaultOptionKeys.mloda_source_feature: {
            "explanation": "Source feature for the operation",
            DefaultOptionKeys.mloda_context: True,  # Context parameter
            DefaultOptionKeys.mloda_strict_validation: False,  # Flexible validation
        },
    }

2. Update match_feature_group_criteria

Replace old pattern-only matching with unified parser:

@classmethod
def match_feature_group_criteria(cls, feature_name, options, data_access_collection=None):
    return FeatureChainParser.match_configuration_feature_chain_parser(
        feature_name, 
        options, 
        property_mapping=cls.PROPERTY_MAPPING,
        pattern=cls.PATTERN, 
        prefix_patterns=cls.PREFIX_PATTERN
    )

3. Modernize input_features Method

Handle both string-based and configuration-based features:

def input_features(self, options: Options, feature_name: FeatureName) -> Optional[Set[Feature]]:
    """Extract source feature from either configuration-based options or string parsing."""

    # Try string-based parsing first
    _, source_feature = FeatureChainParser.parse_feature_name(
        feature_name, self.PATTERN, self.PREFIX_PATTERN
    )
    if source_feature is not None:
        return {Feature(source_feature)}

    # Fall back to configuration-based approach
    source_features = options.get_source_features()
    if len(source_features) != 1:
        raise ValueError(
            f"Expected exactly one source feature, but found {len(source_features)}: {source_features}"
        )
    return set(source_features)

4. Update calculate_feature Method

Support dual approach in feature processing:

def calculate_feature(self, features, options):
    for feature in features.features:
        # Try configuration-based approach first
        try:
            source_features = feature.options.get_source_features()
            source_feature = next(iter(source_features))
            source_feature_name = source_feature.get_name()

            # Extract parameters from options
            operation_type = feature.options.get("operation_type")

        except (ValueError, StopIteration):
            # Fall back to string-based approach for legacy features
            operation_type, source_feature_name = FeatureChainParser.parse_feature_name(
                feature.name, self.PATTERN, self.PREFIX_PATTERN
            )

        # Process using extracted values
        # ... implementation logic

5. Advanced PROPERTY_MAPPING Features

Validation Functions

For complex validation beyond simple value lists:

PROPERTY_MAPPING = {
    "dimension": {
        "explanation": "Number of dimensions for reduction",
        DefaultOptionKeys.mloda_context: True,
        DefaultOptionKeys.mloda_strict_validation: True,
        DefaultOptionKeys.mloda_validation_function: lambda x: isinstance(x, int) and x > 0,
    },
}

Default Values

Specify default values for optional parameters:

PROPERTY_MAPPING = {
    "window_size": {
        "7": "7-day window",
        "30": "30-day window",
        DefaultOptionKeys.mloda_default: "7",  # Default value
        DefaultOptionKeys.mloda_context: True,
    },
}

Group vs Context Classification

PROPERTY_MAPPING = {
    # Group parameter - affects Feature Group resolution
    "data_source": {
        "production": "Production data",
        "staging": "Staging data", 
        DefaultOptionKeys.mloda_group: True,  # Explicit group parameter
        DefaultOptionKeys.mloda_strict_validation: True,
    },
    # Context parameter - doesn't affect resolution
    "algorithm_type": {
        "kmeans": "K-means clustering",
        "dbscan": "DBSCAN clustering",
        DefaultOptionKeys.mloda_context: True,  # Context parameter
        DefaultOptionKeys.mloda_strict_validation: False,  # Flexible validation
    },
}

Multiple Result Columns with ~ Pattern

Some feature groups produce multiple result columns from a single input feature. The ~ pattern allows accessing individual columns:

# OneHot encoding creates multiple columns
base_feature = "onehot_encoded__category"  # Creates all columns
specific_column = "onehot_encoded__category~0"  # Access first column
another_column = "onehot_encoded__category~1"  # Access second column

Implementation Note: Feature groups handle this pattern in their input_features() method to extract the base feature name, and in calculate_feature() to create the appropriately named result columns.

Benefits

  • Consistent Naming: Enforces naming conventions across feature groups
  • Composability: Enables building complex features through chaining
  • Configuration-Based Creation: Simplifies feature creation in client code
  • Validation: Ensures feature names follow expected patterns
  • Multi-Column Support: Handle transformations that produce multiple result columns